Matriks

Pengertian Matriks

Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.

Ordo Matriks

Dijelaskan sebelumnya matriks terdiri dari unsur-unsur yang tersusun secara baris dan kolom. Jika banyak baris suatu matriks adalah m, dan banyak kolom suatu matriks adalah n, maka matriks tersebut memiliki ordo matriks atau ukuran m x n. Perlu diingat bahwa m dan n hanya sebuah notasi, sehingga tidak boleh dilakukan sebuah perhitungan (penjumlahan, perkalian). Pada contoh matriks jumlah penjualan mobil diatas diketahui bahwa:
pengertian dan ordo matriks
  • Banyak baris, m = 3
  • Banyak kolom, n = 3
  • Ordo matriks,  m x n = 3 x 3
Penamaan/notasi matriks menggunakan huruf kapital, sedangkan elemen-elemen di dalamnya dinotasikan dengan huruf kecil sesuai dengan penamaan matriks dan diberi indeks ij. Indeks tersebut menyatakan posisi elemen matriks, yaitu pada baris i dan kolom j. Sebagai contoh, matriks sebelumnya untuk penjualan mobil:
E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}
Dimana, e_{12} = 56 adalah elemen matriks yang berada pada baris ke-1 (i = 1) dan kolom ke-2 (j = 2). Begitu juga dengan elemen matriks yang lainnya.
Pada matriks terdapat dua jenis diagonal, yaitu diagonal utama dan diagonal sekunder. Diagonal utama merupakan elemen-elemen dengan  yang bisa membentuk garis miring. Diagonal sekunder merupakan kebalikan dari garis miring diagonal utama. Perhatikan matriks berikut:
E = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix}
Diagonal utama adalah elemen 34, 36, 46, sedangkan diagonal sekunder adalah elemen 41, 36, 51.

Matriks Identitas

Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan “I”. Contoh:
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}



Jenis-jenis Matriks
Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :

1. Matriks Baris dan Matriks Kolom

Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:
A = (1  4) atau B = (3  7  9) adalah matriks baris
\begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix} atau D = \begin{pmatrix} p \\ q \end{pmatrix} adalah matriks kolom

2. Matriks Persegi

Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
Contoh:
A = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix} adalah matriks persegi berordo 3, atau
B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} adalah matriks persegi berordo 2.

3. Matriks Segitiga Atas dan Segitiga Bawah

Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i > j atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i < j atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
Contoh:
A = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 3 & 7 \\ 0 & 0 & 4 \end{pmatrix} adalah matriks segitiga atas,
B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 4 & 6 & 4 \end{pmatrix} adalah matriks segitiga bawah.

4. Matriks Diagonal

Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.
Contoh:
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}

5. Matriks Skalar

Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.
Contoh:
A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} atau B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}

6. Matriks Indentitas

Sudah dijelaskan di atas.

7. Matriks Simetris

Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen a_{ij} sama dengan elemen a_{ji}.
Contoh:
\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 4 & 5 & 7 \end{pmatrix}
Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.

Transpose Matriks

Transpose matriks merupakan perubahan baris menjadi kolom dan sebaliknya. Transpose matriks dari A_{m x n} adalah sebuah matriks dengan ukuran (n x m) dan bernotasi AT. Jika matriks A ditanspose, maka baris 1 menjadi kolom 1, baris 2 menjadi kolom 2, dan begitu seterusnya.
Contoh:
\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} ditranspose menjadi \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.
Sifat dari transpose matriks: (A^T)^T = A.

Contoh Soal dan Pembahasan

Jika A = \begin{pmatrix} \frac{1}{2}a & 2 \\ b & \frac{3}{2}c \end{pmatrix} dan Jika B = \begin{pmatrix} 2c-3b & 2a+1 \\ a & b+7 \end{pmatrix}, maka agar A = B^T, berapakah nilai c?
Pembahasan:
Diketahui bahwa A = B^T
\begin{pmatrix} \frac{1}{2}a & 2 \\ b & \frac{3}{2}c \end{pmatrix} = \begin{pmatrix} 2c-3b & 2 \\ a & b+7 \end{pmatrix}^T
\begin{pmatrix} \frac{1}{2}a & 2 \\ b & \frac{3}{2}c \end{pmatrix} = \begin{pmatrix} 2c-3b & a \\ 2a+1 & b+7 \end{pmatrix}
Sehingga didapat 4 persamaan baru dari elemen-elemen matriksnya, yaitu:
  • \frac{1}{2}a = 2c - 3b     (persamaan ke-1)
  • 2 = a     (persamaan ke-2)
  • b = 2a + 1     (persamaan ke-3)
  • \frac{3}{2}c = b + 7     (persamaan ke-4)
Dari persamaan tersebut dapat dilakukan substitusi persamaan untuk memperoleh nilai c, yaitu:
a = 2, maka:
b = 2a + 1 = 2(2) + 1 = 5
dan
\frac{3}{2}c = b + 7
c = \frac{2}{3}(b + 7) = \frac{2}{3}(5 + 7) = 8.

Penjumlahan dan Pengurangan Matriks

matriks atau lebih, dapat dijumlakan hanya jika memiliki ordo yang sama. Penjumlahan dilakukan dengan menjumlahkan elemen-elemen yang berposisi sama. Contoh:

Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan B = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix},





maka:
A + B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix}













= \begin{pmatrix} 1+3 & 4+6 \\ 2+4 & 5+7 \\ 3+5 & 6+8 \end{pmatrix} = \begin{pmatrix} 4 & 10 \\ 6 & 12 \\ 8 & 14 \end{pmatrix}

  • Sama halnya dengan penjumlahan, pengurangan dapat dilakukan hanya jika dua matriks atau lebih, memiliki ordo yang sama. Pengurangan dilakukan terhadap elemen-elemen yang berposisi sama.
    Contoh:
    Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan B = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix},
    maka:
    B - A = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
    = \begin{pmatrix} 3-1 & 6-4 \\ 4-2 & 7-5 \\ 5-3 & 8-6 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}
    Sifat dari penjumlahan dan pengurangan matriks:
  • A + B = B + A
  • (A + B) + C = A + (B + C)
  • A – B ≠ B – A

Perkalian Matriks

Matriks dapat dikalikan dengan sebuah bilangan bulat atau dengan matriks lain. Kedua perkalian tersebut memiliki syarat-syarat masing-masing.

Perkalian Matriks dengan bilangan bulat

Suatu matriks dapat dikalikan dengan bilangan bulat, maka hasil perkalian tersebut berupa matriks dengan elemen-elemennya yang merupakan hasil kali antara bilangan dan elemen-elemen matriks tersebut. Jika matriks A dikali dengan bilangan r, maka r.A = (r.a_{ij}). Contoh:
Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan bilangan r = 2, maka:
r.A = 2 . \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 2.1 & 2.4 \\ 2.2 & 2.5 \\ 2.3 & 2.6 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & 10 \\ 6 & 12 \end{pmatrix}
Perkalian matriks dengan bilangan bulat dikombinasikan dengan penjumlahan atau pengurangan matriks dapat dilakukan pada matriks dengan ordo sama. Berikut sifat-sifat perkaliannya:
  • r(A + B) = rA + rB
  • r(A – B) = rA – rB

Perkalian dua matriks

Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga:
perkalian matriks
Elemen-elemen matriks C_{(m \times s)} merupakan penjumlahan dari hasil kali elemen-elemen baris ke-i matriks A dengan kolom ke-j matiks B. Berikut skemanya:
perkalian elemen matriks
Misalkan matriks A memiliki ordo (3 x 4) dan matriks B memiliki ordo (4 x 2), maka matriks C memiliki ordo (3 x 2). Elemen C pada baris ke-2 dan kolom ke-2 atau a22 diperoleh dari jumlah hasil perkalian elemen-elemen baris ke-2 matriks A dan kolom ke 2 matriks B. Contoh:
A = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} dan B = \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}
maka:
A \cdot B = C = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 2 & 5 & 1 & 2 \\ 1 & 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \\ 1 & 4 \end{pmatrix}
C = \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} a_{14}b_{41}) & (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} a_{14}b_{42}) \\ (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} a_{24}b_{41}) & (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} a_{24}b_{42}) \\ (a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} a_{34}b_{41}) & (a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} a_{34}b_{42}) \end{pmatrix}
C = \begin{pmatrix}(2.1 + 1.3 + 4.2 + 3.1) & (2.3 + 1.2 + 4.5 + 3.4) \\ (2.1 + 5.3 + 1.2 + 2.1) & (2.3 + 5.2 + 1.5 + 2.4) \\ (1.1 + 3.3 + 2.2 + 2.1) & (1.3 + 3.2 + 2.5 + 2.4) \end{pmatrix}
C = \begin{pmatrix} 16 & 40 \\ 21 & 29 \\ 16 & 27 \end{pmatrix}
Perlu diingat sifat dari perkalian dua matriks bahwa:
A x B ≠ B x A
Sebagai pembuktian, diketahui A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} dan B = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} maka:
AB = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ 7 & 14 \end{pmatrix}
BA = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 9 \\ 11 & 10 \end{pmatrix}
Terbukti bahwa A x B ≠ B x A. Ada sifat-sifat lain dari perkalian matriks dengan bilangan atau dengan matriks lain, sebagai berikut:
  • k(AB) = (kA)B
  • ABC = (AB)C = A(BC)
  • A(B + C) = AB + AC
  • (A + B)C = AC + BC

Determinan Matriks

Determinan dari suatu matriks A diberi notasi tanda kurung, sehingga penulisannya adalah |A|. Determinan hanya bisa dilakukan pada matriks persegi.

Determinan matriks ordo 2×2

Jika A = \begin{matrix} a & b \\ c & d \end{matrix} maka determinan A adalah:
|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc

Determinan matriks ordo 3×3 (aturan Sarrus)

Jika A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} maka determinan A adalah:
determinan matriks
= aei + bfg + cdg – ceg – afh – bdi
Determinan matriks memiliki sifat-sifat berikut:
1. Determinan A = Determinan AT
2. Tanda determinan berubah jika 2 baris/2 kolom yang berdekatan dalam matriks ditukar
sifat sifat determinan matriks
3. Jika suatu baris atau kolom sebuah determinan matriks memiliki faktor p, maka p dapat dikeluarkan menjadi pengali.
\begin{vmatrix} 1 & 2 & 5 \\ 2 & 6 & 8 \\ 4 & 5 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ (2.1) & (2.3) & (2.4) \\ 4 & 5 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 5 \\ 1 & 3 & 4 \\ 4 & 5 & 2 \end{vmatrix}
4. Jika dua baris atau dua kolom merupakan saling berkelipatan, maka nilai determinannya adalah 0.
\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 3[(1.2) - (2.1)] = 0
5. Nilai determinan dari matriks segitiga atas atau bawah adalah hasil kali dari elemen-elemen diagonal saja.
\begin{pmatrix} 1 & 0 & 0 \\ 2 & 6 & 0 \\ 4 & 5 & 2 \end{pmatrix} = (1.6.2) = 12

Invers Matriks

Suatu matriks A memiliki invers (kebalikan) jika ada matriks B yang dapat membentuk persamaan AB = BA = I, dengan I adalah matriks identitas. Invers dari suatu matriks berordo (2 x 2) seperti A = \begin{matrix} a & b \\ c & d \end{matrix} dapat dirumuskan sebagai:
A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
Invers matriks memiliki sifat-sifat berikut:
  • AA-1 = A-1A = I
  • (A-1)-1 = A
  • (AB)-1 = B-1A-1
  • Jika AX = B, maka X = A-1B
  • Jika XA = B, maka X = BA-1

contoh : 




Komentar

Postingan populer dari blog ini

Hubungan dan Fungsi

LIMIT FUNGSI

Matriks Lanjutan (III)